The GCN4 bZIP can bind to noncognate gene regulatory sequences.

نویسندگان

  • Anna V Fedorova
  • I-San Chan
  • Jumi A Shin
چکیده

We show that a minimalist basic region/leucine zipper (bZIP) hybrid, comprising the yeast GCN4 basic region and C/EBP leucine zipper, can target mammalian and other gene regulatory sequences naturally targeted by other bZIP and basic/helix-loop-helix (bHLH) proteins. We previously reported that this hybrid, wt bZIP, is capable of sequence-specific, high-affinity binding of DNA comparable to that of native GCN4 to the cognate AP-1 and CRE DNA sites. In this work, we used DNase I footprinting and electrophoretic mobility shift assay to show that wt bZIP can also specifically target noncognate gene regulatory sequences: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (Xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and the E-box (Enhancer box, 5'-CACGTG). Although wt bZIP still targets AP-1 with strongest affinity, both DNA-binding specificity and affinity are maintained with wt bZIP binding to noncognate gene regulatory sequences: the dissociation constant for wt bZIP in complex with AP-1 is 13 nM, while that for C/EBP is 120 nM, XRE1 240 nM, and E-box and HRE are in the microM range. These results demonstrate that the bZIP possesses the versatility to bind various sequences with varying affinities, illustrating the potential to fine-tune a designed protein's affinity for its DNA target. Thus, the bZIP scaffold may be a powerful tool in design of small, alpha-helical proteins with desired DNA recognition properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The GCN4 bZIP targets noncognate gene regulatory sequences: quantitative investigation of binding at full and half sites.

We previously reported that a basic region/leucine zipper (bZIP) protein, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes cognate target sites AP-1 (5'-TGACTCA-3') and cAMP-response element (CRE) (5'-TGACGTCA-3') but also binds selectively to noncognate DNA sites: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (xenobiotic response element, 5'-TTGCGTGA)...

متن کامل

The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site.

Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4 bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR) and that 5H-...

متن کامل

ACR1, a yeast ATF/CREB repressor.

Members of the mammalian ATF/CREB family of transcription factors, which are associated with regulation by cyclic AMP and viral oncogenes, bind common DNA sequences (consensus TGACGTCA) via a bZIP domain. In the yeast Saccharomyces cerevisiae, ATF/CREB-like sequences confer either repression or activation of transcription, depending on the promoter context. By isolating mutations that alleviate...

متن کامل

Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains

The AP-1 and ATF/CREB families of eukaryotic transcription factors are dimeric DNA-binding proteins that contain the bZIP structural motif. The AP-1 and ATF/CREB proteins are structurally related and recognize identical half-sites (TGAC), but they differ in their requirements for half-site spacing. AP-1 proteins such as yeast GCN4 preferentially bind to sequences with overlapping half-sites, wh...

متن کامل

The bZIP targets overlapping DNA subsites within a half-site, resulting in increased binding affinities.

We previously reported that the wt bZIP, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes GCN4 cognate site AP-1 (TGACTCA) but also selectively targets noncognate DNA sites, in particular the C/EBP site (TTGCGCAA). In this work, we used electrophoretic mobility shift assay and DNase I footprinting to investigate the factors driving the high affinity between the wt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1764 7  شماره 

صفحات  -

تاریخ انتشار 2006